TIGER ELECTRONIC CO.,LTD

AM/FM 1 CHIP TUNER SYSTEM IC (1.5V USE) TA7792

GENERAL DESCRIPTION

The TA7792 is AM/FM 1 chip tuner system (FM FRONT END+AM/FM IF) ICs, which is designed for low voltage operation (1.5V,3.0V). Those are especially suitable for stereo headphone radio and radio cassette recorder equipments. These item can realize the low power dissipation and few external parts.

FEATURES

- AM detector coil-less
- FM mixer coil-less
- Switchover between AM/FM mode is possible with one-make switch.
- Operating supply voltage range: Vcc(opr)=0.95~5V(Ta=25°C)
- Excellent low supply current (Vcc=1.5V, Ta=25°C)

Icc(AM)=1.2mA(Typ.)

Icc(FM)=4.0mA(Typ.)

BLOCK DIAGRAM

PIN CONNECTION

TERMINAL VOLTAGE:

Terminal voltage at no signal with test circuit (Vcc=1.5V, Ta=25°C)

	Pin No. Sy		Typ.		Unit	Pin No.		Sym-	Typ.		Unit
	Pin Name	bol	AM	FΜ	Unit		Pin Name	bol	AM	FM	Unit
1	FM RF OUT	V1	-	1.5	V	9	FM DET	V9	1.5	1.5	V
2	V c c 1	V2	-	1.5	V	10	Vcc2	V10	1.5	1.5	V
3	FM OSC	V3	-	1.5	V	11	GND2	V11	0	0	V
4	AM OSC	V4	1.5	1.5	V	12	FM IF IN	V12	-	0.7	V
5	AM MIX OUT	V 5	1.5	1.5	V	13	AM RF IN	V13	0.7	-	V
6	AM AGC	V6	0.8	-	V	14	FM MIX OUT	V14	-	0.8	V
7	AM IF IN	V7	1.4	1.5	V	15	GND1	V15	0	0	V
8	AF OUT	V 8	0.6	0.6	V	16	FM RF IN	V16	-	0.7	V

MAXIMUM RATINGS (Ta=25°C)

Characteristics	Symbol	Rating	Unit	
Supply Voltage	Vcc	5	V	
Power Dissinction	Рр	750(DIP)	mW	
Power Dissipation	РD	350(SOP)		
Operating Temperature	Topr	-25~75	°C	
Storage Temperature	Tstg	-55~150	°C	

	-			,							
Characteristics	Sym- bol	Test Cir- Cuit	Test Condition	Min.	Typ.	Max.	Unit				
Supply Current	Laa	1	FM: Vin=0	-	4.0	5.2					
Supply Current	Icc	1	AM: Vin=0	-	1.2	1.8	mA				
Output Desistance Din 9	Ro	1	FM:f=1kHz	-	1.4	-	kΩ				
Output Resistance Pin 8	ко	1	AM: f=1kHz	-	8.0	-	K 52				
AM: Vin=60dBµV EMF, f=1MHz, fm=1KHz, MOD=30%											
Voltage Gain	Gv	1	Vin=30dBµV EMF	14	25	50	mVrms				
Recovered Output Voltage	Vod	1	-	25	40	60	mVrms				
Total Harmonic Distortion	THD	1	-	-	1.5	-	%				
Signal To Noise Ratio	S/N	1	-	-	40	-	dB				
Oscillator Stop Supply Voltage	Vstop	1	Vin<-20dBµV EMF	- 0.85		0.95	V				
FM: Vin=60dB μ V EMF, f=83MHz, fm=1kHz, f=±22.5kHz											
Input Limiting Voltage	Vin(lim)) 1	-3dB limiting	-	10	16	dBµV EMF				
Total Harmonic Distortion	THD	1	-	-	0.25	-	%				
Signal To Noise Ratio	S/N	1	-	-	62	-	dB				
Quiescent Sensitivity	Qs	1	S/N=30dB	-	12	-	dBµV EMF				
AM Rejection Ratio	AMR		MOD=30%	-	30	-	dB				
Oscillator Voltage	Vosc	2	F=60MHz	53	90	135	mVrms				
Oscillator Stop Supply Voltage	vstop		Vin<-20dBµV EMF	-	0.85	0.95	V				
Recovered Output Voltage	Vod	1	-	28	45	68	mVrms				

ELECTRICAL CHARACTERISTICS (Vcc=1.5V, Ta=25°C)

Silicore

TEST CIRCUIT 2

SHAOXING SILICORE TECHNOLOGY CO.,LTD www. Silicore. com. cn CHMC 4/9

COIL DATA (TEST CIRCUIT)

COIL STAGE	TEST FREQUENCY	L (µH)	Co (pF)	Qo	TURN				WIRE
COIL STAGE					1-2	2-3	1-3	4-6	$(mm\Phi)$
L1 FM RF	100MHz	0.053	-	100	I	-	1.75	-	0.5UEW
L2 FM OSC	100MHz	0.065	-	100	I	-	2.25	-	0.5UEW
T1 AM OSC	796kHz	288	-	115	13	73	-	-	0.08UEW
T2 AM IFT	455kHz	-	180	120	-	-	180	15	0.06UEW
T3 FM DET	10.7MHz	-	82	110	-	-	13	-	0.12UEW

APPLICATION NOTE

<FM SECTION>

• RF amplifier (see Fig.1)

This stage is composed of the emitter-grounded and cascade connection amplifier.

The input impedance of pin 16 is about 260Ω , which is determined by D1.

• Mixer amplifier (see Fig.2)

The amplified RF signal is transformed into IF signal by the mixer circuit which is composed of a differential amplifier.

The amplified IF signal is appeared through the emitter follower circuit at pin 14. The output impedance of the ceramic filter.

Fig.2

SHAOXING SILICORE TECHNOLOGY CO.,LTD www. Silicore. com. cn CHMC 5/9

(note)

the spurious characteristic is determined by the characteristic of the ceramic filter (10.7MHz), because the mixer coil is dispensable. It is possible to improve the spurious characteristic that the two ceramic filters of different characteristics are connected in series.

• IF limiter amplifier (see Fig.3)

The IF limiter amplifier is composed of six emitter-grounded amplifiers and a differential amplifier. The basis composition of the emitter-ground amplifiers is shown as Fig.3

• Detector circuit

This stage is composed of the quadrature detector circuit, which has double banlanced.

<AM SECTION>

• RF amplifier (see Fig.4)

This stage is composed of emitter-grounded amplifier, the input impedance of which has about $7.3k\Omega$. It is necessary to connect as Fig.4, because the condenser, C1 is available to the audio by-pass of the RF-AGC, the noise of low frequency.

• Mixer circuit

The amplified RF signal is transformed into IF signal by the mixer circuit, which is composed of a differential amplifier.

• IF amplifier

This stage is composed of four emitter-grounded amplifiers and the two differential amplifiers. The input impedance is rather high, because it is changed by the amplitude of input signal (AGC level). So the input terminal of the IF amplifier must be matched with the impedance of ceramic filter.

 $10k\Omega$

<COMMON SECTION>

• AM/FM mode switchover

Switchover between AM/FM mode is possible with one-make switch. In case of the opened, this IC has AM mode.

Another in case that the terminal is connected to Vcc directly, that has FM mode.

And the terminal of pin 2 is Vcc terminal of FM FRONT END section, too.

• Output circuit (see Fig.5)

Both of the AM/FM detector signal is appeared through the pin 8.

Those output are chosen by the mode switchover.

D7792 $\begin{array}{c} C2 \\ \hline \\ C1 \\ \hline \\ \\ \end{array} \begin{array}{c} 560 \text{pF} \end{array}$

At the same time, the output impedance is changed as follow at AM/FM mode, due to cut the AM carrier signal and pass the FM composite signal smoothly, with only one condenser.

Rout(AM)= $8k\Omega$ (Typ.)

Rout(FM)=1.4k Ω (Typ.)

CHARACTERISTICS CURVES

Silicore

D7792

Outline Drawing

DIP16:

SOP16

SHAOXING SILICORE TECHNOLOGY CO.,LTD www. Silicore. com. cn CHMC